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Five-Dimensional Rindler Spacetime 

B r u c e  M c F a r l a n d  1 

Received May 31, 1996 

We obtain solutions to the field equations for the massless scalar, massless spinor, 
and electromagnetic fields in a Rindler coordinate system consisting of four space 
dimensions and one time dimension. The solutions are shown to allow energy 
> momentum and so may represent massive particles even though the 
corresponding field equations contain no mass term. The solutions are confined 
to a narrow interval in the Rindler coordinate and thus, to an observer who sees 
only these fields, appear to exist in a three-dimensional space. We propose this 
description of spacetime and fields as model of the universe in which we live. 

1. I N T R O D U C T I O N  

The coordinates most  often used in connect ion with a uni formly acceler- 
ated observer are Rindler  coordinates (Rindler, 1966). If  an observer  acceler- 
ates along the z axis of a Minkowski  frame such that he or she feels a constant  
acceleration a, then the Rindler  position z and the Rindler  t ime t of  an event  
in the observer 's  frame are related to the Minkowski  posit ion zM and the 
Minkowski  t ime tM of  the event  by 

zM = z cosh(at) (1.1) 

tM = z sinh(at) (1.2) 

This yields the l ine e lement  

d'r 2 = d z  2 - d ~  = d z  ~ - a2z 2 a t  2 (1.3) 

The observer 's  Rindler  posit ion z = L satisfies 

1 
a = - (1.4) 

L 
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This result is obtained by using equation (1.2) and requiring that tM = 
t at Z = L when tM and t are small, i.e., when the observer's speed in the 
Minkowski frame is small. 

Classically, a free particle at rest in a Minkowski frame follows a trajec- 
tory in the Rindler frame given by 

ZM 
Z - -  - -  

cosh(at) 

where ZM is constant. Classically, therefore, no free particle can remain at 
rest in the Rindler frame. All free particles must accelerate. For the sake of 
brevity, we will refer to this acceleration as a gravitational acceleration 
resulting from a gravitational field which exists in the Rindler frame in spite 
of the fact that Rindler coordinates describe a fiat space-time which contains 
no gravitational field. This somewhat inappropriate nomenclature is justifiable 
because, after all, such acceleration mimics gravity very closely. 

Even though, classically, free particles are required to accelerate in a 
Rindler frame, quantum mechanically they need not experience any such 
acceleration. In this paper we will obtain stationary solutions for the Klein-  
Gordon, Maxwell, and Dirac equations in the Rindler frame. These solutions 
will be seen to hover above the Rindler horizon, in spite of the ambient 
gravitational field. The existence of these solutions may be demonstrated by 
superposing a solution propagating toward the horizon with its time-reversed 
twin propagating away from the horizon. Such a superposition is a standing 
wave, stationary relative to the horizon. 

While obtaining these solutions, it will suit us to work in a space-time 
containing four space dimensions and one time dimension, although the 
problem could equally well be solved in ordinary space-time (Unruh, 1976). 
Our reason for doing this is that it will allow us to assign a mass, if we like, 
to a field even in the case when no mass term is present in the field equation. 
This avoids the Higgs mechanism (Higgs, 1964) and ultimately yields massive 
fields in four-dimensional space-time. Compactification from five dimensions 
to four arises naturally from the presence of the gravitational field in the 
Rindler coordinates, which confines all fields to a thin four-dimensional slice 
near the horizon. This will allow us to postulate a model of the space-time 
in which we live as the four-dimensional remnant of a compactified five- 
dimensional Rindler space-time. 

Throughout this paper Greek symbols will be used for indices which 
run from 0 through 4 and Latin symbols for indices which run from 1 through 
4. The notation 0~ will be used to indicate the derivative with respect to x~ 
and repeated indices will be summed over. 
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2. THE SCALAR FIELD 

We define the coordinate system in which we will be working to have 
four space coordinates x 1, x 2, x 3, x 4 = z and one time coordinate x ~ = t. 
The coordinates are Rindler coordinates with metric tensor components g ~  
given by 

Z 2 
g0o = L2 

g l l  = g22 = g33 = gzz = 1 (2.1) 

gis = 0, i--/:j 

where L is the position of  the Rindler observer. 
The Klein-Gordon equation for scalar field ~b = ~b(x l, x 2, x 3, z, t) is 

ga~(c3a0f3~b - Fxal~ 0x~b) - m2d# = 0 ( 2 . 2 )  

where m is the mass associated with ~b and F ~  is the Christoffel symbol. 
Expressing the Christoffel symbol in terms of the g ~  

FX~ =-~g,X"(Of3g,~,~ + O,~g,,f3 - O,,g~,~) (2.3) 

and using equation (2.1), we find that the only relevant nonzero Christoffel 
symbol is 

F 4  = ~22 (2.4) 

Equations (2.1), (2.2), and (2.4) yield 

L 2 02alp __ 021~) __ 1 0_..~ __ V21~ p "1- m2~b = 0 (2.5) 
Z 2 Ot 2 OZ 2 Z OZ 

where V 2 = 012 + 022 -1- 032 is the ordinary three-dimensional Laplacian 
operator. 

We now express the coordinate dependence of dp as follows: 

~b = f(z) exp(ip, x - iEt) (2.6) 

where x -- (x 1, x 2, x3), p is the momentum conjugate to x, and E is an energy. 
Equations (2.5) and (2.6) yield 

(Bz) 2 d2f  d f  _ [(Bz)2 + (iEL)2]f = 0 (2.7) 
d(Bz)2 + (Bz) d(Bz) 

where 

B = (p2 + m2)ln (2.8) 
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and p = I p l .  We recognize equation (2.7) as the modified Bessel equation 
in coordinate Bz .  Its solution is the modified Bessel function of order iEL, 

f ( z )  = f ( - z )  = KieL(Bz) (2.9) 

Equations (2.6) and (2.9) then give us the (unnormalized) wave function ~b, 

t~ = giEL(B I z l ) exp(ip, x - iEt) (2.10) 

We now point out an important feature of this solution. If we set m = 
0 in equation (2.2), i.e., we remove the mass term, then the solution, equation 
(2.10), becomes 

t~ = KilrL(P I z l ) exp(ip, x -- iEt) (2.11) 

This solution exists for all E and p, and in particular for E > p. Equation 
(2.2) therefore has a solution with E > p (i.e., ~b has a mass) even when the 
mass term is absent. We have the possibility of introducing mass in a gauge- 
invariant way without introducing the Higgs field. 

By multiplying equation (2.2) and its complex conjugate by dp* and ~b, 
respectively, subtracting them, and making use of the fact that g~O is indepen- 
dent of x ~ in the Rindler frame, we obtain 

tg~j ~ + _1 j 4  = 0 (2.12) 
Z 

where the current J~ is given by 

j0  �9 L2 
= t --z2 (6*006 - 6006*) (2.13) 

j k  = --i(qb*0~6 -- 60kqb*), k = 1, 2, 3, 4 (2.14) 

Equation (2.12) is the statement that the covariant divergence of scalar current 
in the Rindler frame vanishes. [The covariant divergence of J~ is Do J~  = 
O~J~ + F~vJ v and in the Rindler frame F ~  = B4(1/z). This gives D ~ J ~  = 
O~J~ + (1/z)J4.] 

Equations (2.11) and (2.14) yield 

j4 = _i(K_iELO4KiE L _ KiELO4K_iEL) -- 0 

since KieL = K-ieL. There is no particle flux in the z direction. 
For large z, we have (Arfkin, 1970) 

7r [ 4v2-- 1 +(4v2-- 1)(4v2--9) ] 
Kv = (2z)l/2 e -z 1 + 8-----~ 2! (802 + " .  (2.15) 

which indicates that for B :~ 0, ~b attenuates as z becomes large. Equation 
(2.13) then says that the probability density j0 associated with ~b must also 
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attenuate. The scalar field, unrestricted as far as x l, x 2, and x 3 are concerned, 
is confined in four-dimensional space to a region near z = 0. On a scale 
large compared to the extent of this region in the z direction, the field dO 
would appear to lie in a three-dimensional subspace just above z = 0. To an 
observer who exists on this scale and sees only dO, the space would appear 
to contain only three dimensions. This is the mechanism of compactification 
that we will employ throughout this paper. In subsequent sections we will 
apply it to the electromagnetic and spinor fields. 

3. ELECTROMAGNETIC FIELD 

To study the behavior of the electromagnetic field in five-dimensional 
Rindler space-time we consider the electromagnetic vector potential ,4~, In 
vacuum it can be chosen to satisfy 

gX~DxDw,71~, = 0 (3.1) 

where D~ is the covariant derivative. 
To simplify the examination of  equation (3.1) we define the following 

fields: 

06- 
V~. = Ox ~ (3.2)  

tgx ~ 
v ~  = (3.3) 

A~, = VX,,4x (3.4) 

where x ~ is the Rindler coordinate and ~" is the Minkowski coordinate. We 
then have 

D~,A~ = 0~/[, - F~,,~x = V~O~A,~ (3.5) 

Equation (3.1) then reads 

gX~[Ox(V ~ O~A~,) - Fx~V~ O,,A~, - Fx~V~ O~Ao,] = 0 (3.6) 

From equations (2.1) and (2.3) we find that the only relevant nonzero 
Christoffel symbols are 

= z  
F 4 L2 (3.7) 

r0~ = r g = !  (3.8) 
Z 
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From equations (2.1) and (3.2) and the relation 

g ~ ,, = "q ,#~ V ~ V ~, 

where "q~,a = diag(-1 ,  1, 1, 1, 1), we find 

Equations (2.1) and (3.6)-(3.9) yield 

_ 1  ~O04Ao + 02A,, - V2A,, + - 1 ~0 _.~ 02Ao _ V2Ao 
L -; 

(3.9) 

1 I04a +( _,) o 4ao ] l o oa4+l O 4aoL '.o 
- ~  - z  Z 

= 0 (3.10) 

whereV42= 0 2 + 0 2 + 0 2 +  02 . 
We now seek a solution to equation (3.10) which propagates within the 

subspace (x l, x 2, x3). For v = i = 1, 2, 3, equation (3.10) reads 

L 2 
- j  o?,a, - V~,A, - !z o, ai = 0 (3.11) 

and for v = 0 equation (3.10) reads 

Z O20Ao - V42Ao - - 04A 0 - - OoA 4 = 0 (3.12) 
L Z Z 

Since we seek a solution which exists within the three-dimensional 
subspace (x 1, x 2, x 3) the constraint 

A 4 = 0 (3.13) 

is a reasonable one. When it is applied, equations (3.11) and (3.12) yield 

L 2 O2A~ c92A1~ 1 0 A ~  V2A~ = 0 (3.14) 
Z 2 t~t 2 OZ 2 Z tgZ 

where ix = 0, 1, 2, 3. 
As a solution to equation (3.14) we try the following: 

A~ = A~og(z)  exp(ip, x - lEt) (3.15) 
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where the A~0 are constants and x = (x l, x 2, x3). Inserting equation (3.15) 
into equation (3.14), we obtain 

dEg dg 
(pz) 2 ~ -I- (pz) d(pz) [(PZ)2 + (iEL)2]g = 0 (3.16) 

Once again we recognize the modified Bessel equation. Its solution is 

g(z) = g ( - z )  = KieL(PZ) (3.17) 

Equations (3.15) and (3.17) yield 

A~ = A~oKiEt.(p I z I ) exp(ip- x - iEt) (3.18) 

Inverting equation (3.4) yields 

This relation, along with equations (3.9), (3.13), and (3.18), yields 

Ai = A,~) KieL(p I Z I ) exp(ip �9 x -- iEt) (3.19) 

/~0 : /~4 = 0 (3.20) 

where i = 1, 2, 3, and we have set A0o -- 0. Equations (3.19) and (3.20) 
represent an ordinary electromagnetic wave propagating in three-dimensional 
space as far as the (x l, x 2, x 3, t) dependence is concerned. The Bessel function 
factor betrays the true four-dimensional character of the wave, but at the 
same time confines it to a slice of four-dimensional space near z -- 0. 
Equations (3.19) and (3.20) may therefore be regarded as an electromagnetic 
wave which is trapped within the three-dimensional subspace (x t, x 2, x3). To 
an observer who can experience only electromagnetic waves and who lives 
on a scale large compared to the extent of the electromagnetic wave in the 
z direction, the four-dimensional space would appear to be three-dimensional. 

4. FOUR-DIMENSIONAL FIELD EQUATIONS 

We now generalize the results of  Section 3 by showing that the field 
equations for the photon in a five-dimensional Rindler frame can compactify 
and display the form of the conventional field equations of ordinary four- 
dimensional Minkowski space-time. 

With the five-dimensional source j~, included, equations (3.1) become 

gX~D~ D~ A~ = - 4xrj~ (4.1) 

These then lead to the inhomogeneous analog of equation (3.14), 

(L2)O2A~O2Ag. IOA~O2AtL 
- -  + ~ - -  V 2 A ~  = 4"trJ~ ( 4 . 2 )  

-~ 1 Ot 2 OZ 2 z OZ Ot 2 



750 McFarland 

where ~ = 0, 1, 2, 3 and 

Ji=ji ,  i =  1 ,2 ,3  

L .  
J0 = -Jo 

z 

In equation (4.2) we have added and subtracted 02A JOt 2 in anticipation 
of what is to follow. 

Expressing A~ as 

Ao. = J do) a(to, z)bo.(to, x) exp(ioJt) (4.3) 

where x = (xt, x2, x3) and inserting it into equation (4.2) yields 

_ ~  I dto {(o~z) 2 02a O___a__a 
0(~z)2 + (~z) 0(~z) 

- [(toZ) 2 + (itoL)2]a}b~ exp(itot) 

+ 02A~ 
0l 2 V2A~ = 4~rJ~ (4.4) 

With a(oJ, z) given by 

a(to, z) = Ki,,,L(tOZ) (4.5) 

the first two lines of equation (4.4) vanish. Upon integrating what is left over 
z we obtain 

02A'~ V2A~ = 4"rrJ~ (4.6) 
0/2 

where 

J~ dz J~, A~ dz A~. (4.7) 

are the ordinary four-dimensional photon field and current. Equations (4.3), 
(4.5), and (4.7) yield 

= I dz do) Ki,,,L(toz)b~(to, x) exp(it~t) (4.8) A~ 

Equations (4.6) and (4.8) are the standard field equations and vector 
potential of electromagnetism in four-dimensional Minkowski space-time. 
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The Bessel function factor attenuates as exp(-toz) and so confines A~ to a 
region near z = 0 in the five-dimensional Rindler frame. If j r  is the current 
of a scalar field, then it is similarly confined, as was demonstrated in Section 
2. In the next section we will study the spinor field and show that its current 
is confined also. This then will compactify electromagnetism to four space- 
time dimensions for the cases when the electromagnetic current is comprised 
of scalar and spinor fields. 

5. T H E  S P I N O R  FIELD 

In a general coordinate frame in four-dimensional space-time a Dirac 
spinor t~ obeys the following equation of motion (Weinberg, 1972): 

"y'~V,~O~t~ + �89 Vx,,)~ = 0 (5.1) 

where oL, [3, and k are Lorentz indices and I~ and v are coordinate indices. 
The V~ ~ are inverse vierbein components, the T" are 4 • 4 gamma matri- 
ces satisfying 

~f~/~ + T ~ f  = 2-q ~ (5.2) 

and -q~ is the Minkowski tensor, d iag[-1 ,  1, I, 1]. The crUX are 4 • 4 
matrices satisfying the following commutation relations: 

[o "~, tr "18] = "q~tr ~s - "q~Gr ~ + "q~o "~ - lq~tr v~ (5.3) 

and D~ is the covariant derivative, 

Do.Vx,, = 0~Vxv - F~vVx~ (5.4) 

We may use all of the above in five-dimensional Rindler space-time if 
we let all indices run from 0 through 4 and define -q~ as the 5 • 5 Minkowski 
tensor, diag[-1,  1, 1, 1, 1]. The V, ~ in five-dimensional Rindler space-time 
can be obtained by taking the inverse of the expression for V~ ~ given in 
equation (3.9). This gives 

The T" are chosen to satisfy equation (5.2). In what follows we will use 
the following 4 • 4 representation for them: 

,0:(:1 

l) 
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where the o" k are the Pauli matrices. From equations (5.2) and (5.3) we obtain 

~ a  = -I-[~/", ~/a] (5.7) 

As we will see, the spinor t~ in five-dimensional Rindler space-time is 
permitted a mass, even though equation (5.1) contains no mass term. 

Equations (3.7), (3.8), (5.4), (5.5), and (5.7) may be used to write 
equation (5.1) as 

L ~/O0o~ + 1 Z ~ZZ ~4~j .4_ ,~kOk~l + ,~4041] / = 0 (5 .8 )  

where k = 1, 2, 3. 
We now express ~ as 

= / ~ , ( z ) x ~  exp(ip.x  - iEt) (5.9) 
* \~2(z)x] 

where • satisfies er .p• = p• Equations (5.6), (5.8), and (5.9) then yield the 
coupled equations 

1 (iEL + 
z 

1 ( - i E L  + 
z 

l) d~2 
~2 - ip[, + ~ = 0 (5.10) 

) dgl 
~, + ip~2 + ~ Z  = 0 (5.11) 

Two sets of solutions to these equations are readily obtainable. 
Solving equation (5.11) for ~2 and inserting the result into equation 

(5.10) yields the modified Bessel equation 

(PZ)2 d(pz) 2- d(pz) (PZ)2 + - iEL E1 = 0 (5.12) 

Equations (5.11) and (5.12) then yield 

~t = Ka(pz) (5.13) 

_ _  dKa(pZ) ~2 - EL + il2 Ka(pZ) + i (5.14) 
pz d(pz) 

where a = 112 - iEL. 
Similarly, solving equation (5.10) for ~1 and inserting the result into 

equation (5.11) yields the modified Bessel equation 

(pz) ~ a~pz)2 + (pz) a~z) (Pz)~ + + iEL ~ = 0 (5.15) 
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Equations (5.10) and (5.15) then yield 

E L  - i/2 dKb(pz)  
E~ - - -  Kb(pZ) -- i ~  (5.16) 

p z  d (p z )  

E~ = Kb(pz)  (5.17) 

where b = 1/2 + iEL. In equations (5.16) and (5.17) we have given El and 
E2 the new names E[ and E~, respectively, for clarity in what is to follow. 

The solution to equation (5.1) which we choose to represent the spinor 
field in the Rindler frame is a linear combination of  the above solutions. We 
write it as 

where 

(001(z)x~ exp(ip, x - iEt) 
* = \00~(z)x] 

(5.18) 

001 = E~ + El', 002 = E~ + 22' 

An immediate consequence of this choice is 

001" = 002 (5.19) 

By multiplying equation (5.8) on the left by ~ = ~,.,/0 and the Hermitian 
conjugate of  equation (5.8) on the right by ~0~ and subtracting the resulting 
equations we obtain 

o0(L'~yOI~I) + Ok(~'~kllO -~- !-~Y41~l -~" (5.20) 

where k is summed from 1 through 4. 
With the spinor current J~ defined as 

jo  = L ~ o ,  (5.21) 
Z 

j k  = ~/k~, k = 1, 2, 3, 4 (5.22) 

we recognize equation (5.20) as the statement that the covariant divergence 
of the spinor current in the Rindler frame is zero. 

Equations (5.18), (5.19), and (5.22) yield 

j4  = 0 

i.e., there is no particle flux in the z direction. 
As in the case of the scalar and electromagnetic fields, t~ attenuates 

exponentially with p z  in the asymptotic region. The probability density j0  
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associated with ~ therefore also attenuates. This confines t~ to a region of 
four-dimensional space near z = 0 where it masquerades as a field in three- 
dimensional space. In addition, a solution to equation (5.1) exists for which 
E > p. The field ~ may therefore possess a mass even though equation (5.1) 
is massless. 

6. DISCUSSION 

We have found solutions in five-dimensional Rindler space-time/145 to 
the field equations of  scalar, spinor, and electromagnetic fields. These solu- 
tions are trapped in the four-dimensional subspace M4 which exists near the 
Rindler horizon at z = 0. We may think of these solutions as representing 
particles which are trapped in a gravity well whose minimum is at z = 0. If 
a particle strays to a value of z above M4 it is pushed back to M4 by a 
gravitational force. In Section 4 we showed that all of  electromagnetism can 
take place in M4, i.e., currents, charges, and fields obey the laws we are 
familiar with, laws which are a consequence of the four-dimensional nature 
of our space-time. Although we have not studied the case of the gauge fields 
of the electroweak and strong interactions, it seems obvious that the particles 
associated with these fields should be trapped in the gravity well also and 
therefore must reside in M4. 

At this point it is natural to ask the following question. Does the universe 
we live in actually contain four space dimensions, i.e., is it M5 of the previous 
paragraph, and do we reside in M4 near z = 0? Any measurement we could 
make, including those associated with our senses, is consistent with this 
possibility. 

One advantage in choosing M5 as a model for the universe is that it can 
provide an elementary particle with mass without the need for a mass term 
in the corresponding field equation. Mass may therefore be introduced without 
spoiling gauge invariance. If the Higgs boson remains undiscovered, this 
alternative route to mass may turn out to be useful. 

One may ask, assuming our space-time to be five dimensional, why 
must it be Rindler in nature? What makes the z axis of  our coordinate system 
different from the other axes? Specifically, why does our universe appear to 
be accelerating in the z direction? in our next paper we provide an answer 
to this question and, in doing so, propose a cosmological model which is 
free of many of  the difficulties associated with the Big Bang model. The 
new model will describe a universe which is immensely old, consistent with 
general relativity, and which expands, but whose origin is not associated with 
a Big Bang. It will also offer an observational test of  its validity. 

We have discussed solutions to the field equations for which E > p 
(scalar and spinor fields) and solutions for which E = p (electromagnetic 
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field), but what about solutions for which E < p? These appear to be valid 
as well. (Any values of E and p are allowed.) These solutions represent 

J 

tachyons, and at present we see no way of avoiding them. 
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